Partially Ordered Sets

Sasha Shashkov

December 2018

Introduction

A poset is a set P equipped with a binary relation denoted \leq.
Similar to totally ordered set such as \mathbb{N} or \mathbb{R} except two elements may be incomparable.

Posets satisfy the following axioms:
(1) Reflexivity: $\forall t \in P, t \leq t$ and $t \geq t$.
(2) Anti-Symmetry: If $s \geq t$ and $s \leq t$, then $s=t$.
(3) Transitivity: If $s \geq t$ and $t \geq u$, then $s \geq u$.

Cover Relations and Hasse Diagrams

Definition

For $s, t \in P$, we say that s covers t if $s>t$ and there is not $u \in P$ such that $s>u>t$.

Definition

A Hasse Diagram is an undirected graph visualizing cover relations, with each element as a vertice and an edge between two elements if one covers the other. The greater element is "above" the lesser one.

Examples

Products

Definition

The product $P \times Q$ of two posets P and Q is the poset of all pairs (s, t) with $s \in P$ and $t \in Q$ with $(s, t) \leq\left(s^{\prime}, t^{\prime}\right)$ iff $s \leq s^{\prime}$ and $t \leq t^{\prime}$.

Example

The Hasse Diagram for the poset $\mathbf{2} \times \mathbf{2}$ is shown below. It is isomorphic to B_{2}. In fact, $\mathbf{2}^{n} \cong B_{n}$.

Subsets

Definition

A chain of length ℓ is a sequence of elements $t_{0}<t_{1}<t_{2} \ldots<t_{l}$ in P , and a multichain of length ℓ is a sequence of elements $t_{0} \leq t_{1} \leq t_{2} \ldots \leq t_{1}$.

Definition

An order ideal of an element of P is a set of elements I such that if $t \in I$ and $s \leq t$, then $s \in I$.

Definition

An interval [s, t] of P is the set of all elements u such that $s \leq u \leq t$. $\operatorname{lnt}(P)$ is the set of all intervals in P

Incidence Algebras

The Incidence Algebra of a poset P, denoted I_{P} or just I, is the algebra of all functions $f: \operatorname{Int}(P) \rightarrow K$, where K is any field.

Multiplication or convolution is defined as:

$$
f g(s, t)=\sum_{s \leq u \leq t} f(s, u) g(u, t)
$$

The identity δ (or sometimes 1) is:

$$
\delta(s, t)= \begin{cases}1 & s=t \\ 0 & s \neq t\end{cases}
$$

The Zeta Function

The zeta function ζ is defined by $\zeta(s, t)=1$ for all $s \leq t \in P$.
We can see that

$$
\zeta^{2}(s, t)=\sum_{s \leq u \leq t} \zeta(s, u) \zeta(u, t)=\sum_{s \leq u \leq t} 1=\#[s, t]
$$

or more generally

$$
\zeta^{n}(s, t)=\sum_{s=t_{0} \leq t_{1} \ldots \leq t_{n}=t} 1=\# \text { of multichains of length } n \text { from } s \text { to } t
$$

We can also show

$$
(2-\zeta)^{-1}(s, t)=\text { total number of chains from } s \text { to } t
$$

The Möbius Function

Definition

The Möbius function μ (or μ_{P} for a specific poset) is the inverse of ζ, so $\mu \zeta(s, t)=\zeta \mu(s, t)=\delta(s, t)$. It is defined explicitly as

$$
\mu(s, t)= \begin{cases}1 & s=t \\ -\sum_{s \leq u<t} \mu(s, u) & s<t\end{cases}
$$

Theorem

Let P and Q be finite posets and let $P \times Q$ be their product poset. Let $s, s^{\prime} \in P$ and $t, t^{\prime} \in Q$ such that $(s, t) \leq\left(s^{\prime}, t^{\prime}\right)$ in $P \times Q$. Then

$$
\mu_{P \times Q}\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right)=\mu_{P}\left(s, s^{\prime}\right) \mu_{Q}\left(t, t^{\prime}\right)
$$

Möbius Inversion

Theorem

If P is a poset such that every order ideal is finite, and f, g are two functions from $P \rightarrow K$, where K is any field, then

$$
f(t)=\sum_{s \leq t} g(s)
$$

if and only if:

$$
g(t)=\sum_{s \leq t} f(s) \mu(s, t)
$$

for all $t \in P$.
We also have the dual version:

$$
f(t)=\sum_{s \geq t} g(s) \text { if and only if: } g(t)=\sum_{s \geq t} f(s) \mu(s, t)
$$

Inclusion-Exclusion

We can quickly calculate that $\mu_{2}(0,1)=-1$. Since $2^{n} \cong B_{n}$, we calculate that

$$
\mu_{B_{n}}(s, t)=\prod_{i} \mu_{2}\left(s_{i}, t_{i}\right)=(-1)^{\#\left(s_{i} \neq t_{i}\right)}
$$

where $s_{i}=1$ if $i \in s$ and 0 if not (t_{i} is defined analogously)
As sets this means $\mu_{B_{n}}(S, T)=(-1)^{\#(S-T)}$. Dual Möbius inversion then gives us:

$$
f(T)=\sum_{S \supseteq T} g(S) \text { if and only if: } g(T)=\sum_{S \supseteq T} f(S)(-1)^{\#(S-T)}
$$

This statement is equivalent to the Principle of Inclusion-Exclusion.

Number Theory

If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, then

$$
D_{n} \cong\left(a_{1}+1\right) \times\left(a_{2}+1\right) \times \ldots \times\left(a_{k}+1\right)
$$

Easy computation gives us

$$
\mu(s, n)=\mu\left(\frac{n}{s}\right)= \begin{cases}(-1)^{p} & \text { if } \frac{n}{s} \text { is square-free } \\ 0 & \text { otherwise }\end{cases}
$$

Where p is the number of prime factors of $\frac{n}{s}$. Möbius inversion gives

$$
f(n)=\sum_{s \mid n} g(s) \text { if and only if: } g(n)=\sum_{s \mid n} f(s) \mu\left(\frac{n}{s}\right)
$$

This formula is known as the Möbius transform.

