Partially Ordered Sets

Sasha Shashkov

December 2018

Sasha Shashkov

Partially Ordered Sets

December 2018 1 / 12

A *poset* is a set P equipped with a binary relation denoted \leq .

Similar to totally ordered set such as $\mathbb N$ or $\mathbb R$ except two elements may be incomparable.

Posets satisfy the following axioms:

- **1** Reflexivity: $\forall t \in P, t \leq t \text{ and } t \geq t$.
- **2** Anti-Symmetry: If $s \ge t$ and $s \le t$, then s = t.
- Transitivity: If $s \ge t$ and $t \ge u$, then $s \ge u$.

Definition

For $s, t \in P$, we say that s covers t if s > t and there is not $u \in P$ such that s > u > t.

Definition

A *Hasse Diagram* is an undirected graph visualizing cover relations, with each element as a vertice and an edge between two elements if one covers the other. The greater element is "above" the lesser one.

• • • • • • • •

э

Products

Definition

The product $P \times Q$ of two posets P and Q is the poset of all pairs (s, t) with $s \in P$ and $t \in Q$ with $(s, t) \leq (s', t')$ iff $s \leq s'$ and $t \leq t'$.

Example

The Hasse Diagram for the poset $\mathbf{2} \times \mathbf{2}$ is shown below. It is isomorphic to B_2 . In fact, $\mathbf{2}^n \cong B_n$.

Image: Image:

э

Definition

A *chain* of length ℓ is a sequence of elements $t_0 < t_1 < t_2 \ldots < t_l$ in P, and a multichain of length ℓ is a sequence of elements $t_0 \leq t_1 \leq t_2 \ldots \leq t_l$.

Definition

An *order ideal* of an element of P is a set of elements I such that if $t \in I$ and $s \leq t$, then $s \in I$.

Definition

An *interval* [s, t] of P is the set of all elements u such that $s \le u \le t$. Int(P) is the set of all intervals in P The Incidence Algebra of a poset P, denoted I_P or just I, is the algebra of all functions $f : Int(P) \to K$, where K is any field.

Multiplication or convolution is defined as:

$$fg(s,t) = \sum_{s \leq u \leq t} f(s,u)g(u,t)$$

The identity δ (or sometimes 1) is:

$$\delta(s,t) = \begin{cases} 1 & s = t \\ 0 & s \neq t \end{cases}$$

The Zeta Function

The zeta function ζ is defined by $\zeta(s, t) = 1$ for all $s \leq t \in P$. We can see that

$$\zeta^2(s,t) = \sum_{s \le u \le t} \zeta(s,u)\zeta(u,t) = \sum_{s \le u \le t} 1 = \#[s,t]$$

or more generally

 $\zeta^n(s,t) = \sum_{s=t_0 \le t_1 \dots \le t_n = t} 1 = \#$ of multichains of length *n* from *s* to *t*

We can also show

 $(2-\zeta)^{-1}(s,t) =$ total number of chains from s to t

Definition

The Möbius function μ (or μ_P for a specific poset) is the inverse of ζ , so $\mu\zeta(s,t) = \zeta\mu(s,t) = \delta(s,t)$. It is defined explicitly as

$$\mu(s,t) = \begin{cases} 1 & s = t \\ -\sum_{s \le u < t} \mu(s,u) & s < t \end{cases}$$

Theorem

Let P and Q be finite posets and let $P \times Q$ be their product poset. Let $s, s' \in P$ and $t, t' \in Q$ such that $(s, t) \leq (s', t')$ in $P \times Q$. Then

$$\mu_{P\times Q}((s,t),(s',t'))=\mu_P(s,s')\mu_Q(t,t')$$

Theorem

If P is a poset such that every order ideal is finite, and f, g are two functions from $P \rightarrow K$, where K is any field, then

$$f(t) = \sum_{s \leq t} g(s)$$

if and only if:

$$g(t) = \sum_{s \leq t} f(s) \mu(s, t)$$

for all $t \in P$.

We also have the dual version:

$$f(t) = \sum_{s \ge t} g(s)$$
 if and only if: $g(t) = \sum_{s \ge t} f(s)\mu(s,t)$

We can quickly calculate that $\mu_2(0,1) = -1$. Since $\mathbf{2}^n \cong B_n$, we calculate that

$$\mu_{B_n}(s,t) = \prod_i \mu_2(s_i,t_i) = (-1)^{\#(s_i \neq t_i)}$$

where $s_i = 1$ if $i \in s$ and 0 if not (t_i is defined analogously)

As sets this means $\mu_{B_n}(S, T) = (-1)^{\#(S-T)}$. Dual Möbius inversion then gives us:

$$f(T) = \sum_{S \supseteq T} g(S)$$
 if and only if: $g(T) = \sum_{S \supseteq T} f(S)(-1)^{\#(S-T)}$

This statement is equivalent to the Principle of Inclusion-Exclusion.

Number Theory

If
$$n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$$
, then $D_n\cong (a_1+1) imes (a_2+1) imes\dots imes (a_k+1)$

Easy computation gives us

$$\mu(s,n) = \mu\left(\frac{n}{s}\right) = \begin{cases} (-1)^p & \text{if } \frac{n}{s} \text{ is square-free} \\ 0 & \text{otherwise} \end{cases}$$

Where p is the number of prime factors of $\frac{n}{s}$. Möbius inversion gives

$$f(n) = \sum_{s|n} g(s)$$
 if and only if: $g(n) = \sum_{s|n} f(s) \mu\left(rac{n}{s}
ight)$

This formula is known as the Möbius transform.

Sasha Shashkov